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Abstract

This paper addresses the issue of power system restoration under uncer-
tainty arising from climate hazards such as hurricanes, floods, and tornadoes.
We propose a worst-case robust optimization model based on a graph parti-
tioning problem to facilitate the decision-making process involved in power
system restoration. In addition to the common objectives of load shedding
cost and restoration time, the equity concept is integrated into the opti-
mization model. The degree of conservativeness is incorporated to provide
decision-makers with the flexibility to customize the restoration plan accord-
ing to the planner’s risk tolerance (i.e., risk-averse or risk-prone) regarding
the unknown status of transmission lines. The model is structured as a bi-
level multi-objective mixed-integer programming problem that can be solved
through an iterative process. The proposed approach is tested and analyzed
using three IEEE case studies of 14, 39, and 118-bus test systems. The re-
sults show that the proposed equity-aware model outperforms performance
benchmark models based on a variety of performance metrics, such as aver-
age load shedding amount and average load shedding percentage.
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Nomenclature

Indices

b Index for buses, b=1,...,NB. V' is an alias to b
d Index for demand loads, d =1,...,ND

g Index for black start generators, g =1,..., NBS
l Index for transmission lines, [ =1,..., NL

m Index for sections, m=1,...,NM

t Index for time, t =1,...,NT

Parameters

w Restoration time cost rate vector

D Real power demand vector

KD Bus-demand incident matrix

KG Bus-unit incident matrix

KL Bus-line incident matrix

apy’ Connection state between bus b and ¥’

B A set of buses on a network, b € B, NB = |B|

c Marginal cost of generators

PgG mn PgG AT Minimum and maximum generating capacity of generation

unit g
PlL’max Power line capacity of line [
T Total restoration time matrix

VOLL Value of loss of load

) Reactance of line [
Variables
¢ € Z Auxiliary current time equal to ¢ at time ¢



O € R Phase angle of bus b at time ¢

LS eR Load shedding vector per demand (hourly)

Ny € 7 The number of buses in section m
Pﬁ eR Generated power of unit g at time ¢
Plf eR Power flow on line [ at time ¢

spm € 0,1 State of bus b at section m
Tcllmd €7  Load pick up time of demand d
ypy € 0,1 Tie-line state between bus b and v/

LS eR Load shedding vector per section (hourly)

1. Introduction

Environmental hazards, including hurricanes, floods, and tornadoes, pose
an increasing threat to the reliable operation of the power grid, exacerbated
by climate change [1, 2]. Additionally, aging power grid infrastructure fur-
ther heightens vulnerability to adverse weather conditions [3]|. In the United
States alone, severe weather events caused 891 power outages between 2014
and 2018, with the major winter storm in February 2021 leading to a pro-
longed outage affecting over four million customers in Texas [4]. On average,
electricity customers in the U.S. experience approximately 250 minutes of
power loss annually, with 138 minutes attributed to major weather events
such as snowstorms, hurricanes, floods, and heatwaves [4]. These outages im-
pose significant reliability challenges and financial burdens on communities,
specially those ones not have sufficient resource to cope with such disasters.
The inflation-adjusted cost of weather-related power outages in the U.S. is
estimated at $27 billion annually [5].

Beyond economic and operational consequences, power restoration raises
critical equity concerns. Equity refers to the fair distribution of benefits and
burdens across communities, ensuring that populations with limited resource
are not disproportionately affected. Energy justice extends this principle
by advocating for universal access to affordable, reliable, and sustainable
energy services. Equity-aware power restoration is essential to mitigating
the disproportionate impacts of extreme weather events and fostering a more
just energy system [6].



Statistics have shown that compared with other communities, communi-
ties with limited access to resources and infrastructures bear a disproportion-
ate burden of the severe impacts of extreme weather events. These commu-
nities often lack influence in the decision-making process related to their en-
ergy services, resulting in unfavorable restoration processes that leave them
in the dark for days, or even weeks. Equity-related concerns have long been
neglected in the context of power restoration [7, 8, 9, 10]. Common objec-
tives found in the literature include load shedding cost ([11, 12, 13, 14, 15]),
restoration time ([11, 12, 13, 16]), power generation cost [12]|, system en-
ergizing capability ([17, 14, 15]), and load curtailment [17]. However, to
achieve an equitable energy future, energy justice principles such as fairness
and social equity must be integrated into energy systems. Addressing these
principles in the power restoration process is crucial to ensuring that all
communities are prioritized and treated equitably during and after extreme
weather events.

Following a complete or partial failure, power systems must be restored
to normal operation as quickly as possible. Power restoration can be done
sequentially or in parallel. The sequential restoration process typically fol-
lows a sequence of steps, which can be time-consuming. In comparison, a
parallel power system restoration strategy can be more advantageous, espe-
cially for widespread blackouts [12, 18, 19, 20]. During parallel restoration,
the affected area is sectionalized into smaller subsystems at the early stages
of restoration. These separate sectionalized subsystems will then be restored
through careful coordination, based on their generator ramping capabilities,
penetration levels of renewable energy sources (RES), and load recovery re-
quirements |21, 17|. All the subsystems will be reconnected in the last stage
to rebuild the entire system by re-energizing transmission lines and substa-
tions [18, 20|.

However, designing an effective and prompt restoration strategy is not
straightforward. One such major challenge is associated with uncertainties,
especially with an ever-increasing penetration of renewable energy sources
that can be highly stochastic and volatile. By employing data-driven, quan-
titative metrics, recent studies have captured the uncertainty inherent in net-
work disruptions and recovery processes [22]. Although appropriate prepara-
tion and prior planning can help enhance and accelerate the power restora-
tion process, various sources of uncertainties must be carefully considered
during the restoration process [23, 24|, which include load forecast [25, 26,
27|, renewable energy resources [28], infrastructure damage [29], and line
availability [13]. Among various uncertainties in power systems, transmis-
sion line outages are particularly concerning due to their high vulnerability



to natural disasters. This is because transmission lines are typically exposed
in wide-open areas, making them more susceptible to damage. When a hur-
ricane strikes a power network, the availability of power transmission lines
varies widely depending on the intensity of the hurricane and the resilience
of the impacted facilities [30]. Therefore, the condition of those damaged
lines needs to be incorporated from the beginning of the power restoration
process to ensure a speedy recovery.

So far, most studies in the literature have focused on simulating the fail-
ure of the transmission lines and its impact after a disruption (31, 32]. To
this issue, probabilistic studies have been conducted to predict the occur-
rence of a disruptive event leading to transmission line failure |31, 32|. An
unsupervised deep learning framework was proposed in [33] to detect power
transmission line faults, while considering uncertain parameters. Further-
more, uncertainty associated with transmission line outages has also been
studied in transmission expansion problems. For instance, 34| presents a
stochastic model that coordinates the planning of generation and transmis-
sion expansion, while taking into account random outages of transmission
lines. Additionally, [35] incorporates random uncertainties in transmission
lines when addressing the problem of generation and transmission line ex-
pansion planning. However, the uncertain nature of line failures, following a
disruption event, has been largely left unaddressed in the power restoration
literature.

While robust optimization (RO) approaches have recently been proposed
to account for uncertainties in transmission line availability, these models of-
ten adopt a worst-case perspective that treats all uncertain outcomes with
equal weight [36, 37, 38]. This can lead to overly conservative solutions that
may unnecessarily limit operational flexibility or overcommit restoration re-
sources. Existing models typically lack a mechanism to calibrate the level
of conservatism based on the likelihood of line availability or the decision-
maker’s tolerance for risk. This gap highlights the need for a more flexible
framework that allows planners to tailor restoration strategies to different
risk profiles. Introducing a tunable parameter to represent the degree of con-
servativeness provides a practical way to bridge this gap, enabling a smoother
trade-off between robustness and efficiency under uncertainty.

To bridge these two important research gaps identified above, in this pa-
per, we develop a novel approach to facilitate the cost-effective, equitable,
and prompt parallel restoration of a power grid. While uncertainties can be
modeled by stochastic programming (SP) [39], [40, 41|, robust optimization
[14, 42, 43|, and risk-constrained methods [44], as the probability distribu-
tion of the line damage is often unknown/hard to forecast, we consider an



RO approach that constructs a solution that is feasible for any possible re-
alizations of the parameter within an assumed uncertainty set to cover a
variety of failure scenarios based on a limited amount of data [45, 46, 47].
First, we formulate a bi-level graph partitioning problem (GPP) as the base
model, with equity taken into account. Then, we develop a worst-case robust
optimization (RO) model to take into account the uncertainty of transmis-
sion line status following a natural disaster, where the fragility curve is used
to estimate transmission line failure at a given wind speed [48]. Lastly, we
elaborate on the degree of conservativeness concept, which provides decision-
makers with the flexibility of adjusting the restoration plan according to the
operator’s risk tolerance.
The contributions of this work are three-fold:

o Equity-aware problem formulation: A novel equity-aware bi-level for-
mulation is proposed in this paper to restore power considering eco-
nomic and social disparities among various communities. The model
introduces network flow constraints to address the infeasibility issue
found in [13].

o Worst-case robust optimization model: A worst-case RO model is pro-
posed to develop a reliable power system restoration plan under the
uncertainty of transmission line availability.

o Adjustable degree of conservativeness for flexibility in planning: A con-
cept of degree of conservativeness is introduced to help decision-makers
develop a post-hurricane restoration plan according to their risk-taking
preferences on the parameter uncertainty.

The rest of the paper is organized as follows. Section 2 describes the
problem and the optimization model formulations in four steps: the equity
indexes (2.1), the equity aware deterministic model (2.2), the robust coun-
terpart model (2.3), and the degree of conservativeness on the line failure
(2.4). Section 3 discusses numerical experiments, and conclude the paper in
Section 4.

2. Problem Description

This work builds upon the graph partitioning problem (GPP) model
introduced in [13], which serves as our benchmark. One critical limitation
of the existing GPP model is its inability to guarantee feasible power flow
throughout the network. Specifically, due to the formulation’s lack of explicit



constraints ensuring connectivity between nodes and at least one generator,
the model may lead to infeasible solutions, as illustrated in Figure 1(b). To
overcome this issue, we introduce additional network flow constraints to the
GPP formulation, ensuring that all partitioned regions maintain a viable
power connection.

This study assumes that power restoration follows a build-up restoration
approach, as described in [49]. In this approach, the grid is decomposed into
smaller sub-networks, and restoration is conducted within each partition be-
fore potential reconnection. It is important to note that the reconfiguration
process necessary to merge these restored regions is beyond the scope of this
work.

To model the problem effectively, we formulate the GPP as a bi-level op-
timization problem. The upper-level model (see constraints (11)-(23)) is re-
sponsible for partitioning the power network into multiple regions, each con-
taining exactly one black-start (BS) generator—an emergency power source
capable of operating independently of the main grid [50]. Based on the par-
titions determined in the upper level, the lower-level model (see constraints
(26)-(36)) focuses on energizing each of the resulting sub-networks while en-
suring feasible power flow.

Given the complexity of the problem, multiple, and often conflicting,
objectives must be considered. For instance, maximizing power supply min-
imizes load shedding but increases power generation costs. To handle these
trade-offs, we adopt a preemptive goal programming approach [51], which
enables prioritization among conflicting objectives. The upper-level model
aims to minimize the number of connections between subsections (promot-
ing a modular design), load-shedding costs, restoration time costs, and power
generation costs. The lower-level model retains all upper-level objectives, ex-
cept for the line connection cost, while incorporating additional line power
flow constraints.

In the following sections, we focus on the integration of equity consid-
erations into the power restoration process, presenting the mathematical
formulations of the proposed models in a structured manner. We begin by
discussing the equity indices employed in this work in Section 2.1: Theil’s T
index, utilized as an equity performance measure in the upper-level model,
and the equity gap, incorporated as an additional equity measure at the
lower level. Theil’s T index, which captures disparities in resource alloca-
tion, involves a logarithmic function that complicates direct computation.
To address this challenge, we derive a second-order Taylor’s approximation,
which, while not linear, simplifies the computational complexity of the prob-
lem. Similarly, the equity gap measures inequities across different communi-



(a) An example of feasible sectionalization (b) An example of infeasible sectionalization

Figure 1: Analysis of the influence of different economic policies

ties, ensuring a holistic approach to equity in the restoration process.

Next, Section 2.2 introduces the Equity-aware GPP model, a determin-
istic and simpler formulation that incorporates equity measures directly into
the bilevel preemptive goal programming framework. This model replaces
traditional objectives such as load-shedding cost with equity-driven objec-
tives to ensure a fair distribution of resources during the restoration process.

Following this, we extend the Equity GPP model to develop its robust
counterpart, the Equity RCP model in Section 2.3, which accounts for worst-
case scenarios. This model introduces a modification to the bus connection
matrix aj,, to address uncertainties associated with extreme events. The
robust formulation ensures that equity considerations remain effective even
under highly uncertain and adverse conditions.

Finally, we define the degree of conservativeness in Section 2.4, repre-
sented by the parameter §, as a measure of decision-makers’ risk tolerance.
This parameter governs the perception of failed lines caused by extreme
events by incorporating wind speed scenarios into the connectivity matrix.
It provides decision-makers with flexibility in adjusting the restoration plan
according to their risk tolerance, enabling a trade-off between the conserva-
tiveness of the solution and the restoration objectives, and concluding the
mathematical section of the paper.

2.1. Equity Indezes

Various metrics have been developed to measure equity in resource dis-
tribution, each with its own advantages and limitations. In this work, we
utilize Theil’s T index [52] and the equity gap to assess equity in power grid



restoration. Theil’s T index, specifically its between-zone index (BZI) com-
ponent, is employed at the upper level to capture disparities in load shedding
across different grid sections. At the lower level, we use the equity gap to
ensure that deviations in load shedding within each section remain minimal,
maintaining fairness among different loads in the same section.

While Theil’s T index includes both BZI and within-zone index (WZI)
components [52], we do not use WZI at the lower level because it introduces
nonlinearity and non-convexity into the problem. In a bilevel formulation,
ensuring convexity in the lower level is crucial for convergence, making the
equity gap a more suitable choice for maintaining equity within sections while
keeping the problem tractable.

2.1.1. Theil’s T Index

Theil’s T index is an entropy-based measure of inequality in the distri-
bution of a scarce resource [52]. In this study, the scarce resource is load
shedding, and our goal is to ensure that load shedding is distributed as equi-
tably as possible across different sections of the power grid. Theil’s T index
is particularly well-suited for this application because it not only quanti-
fies overall inequality but also allows for decomposition into between-zone
inequality (BZI) and within-zone inequality. The BZI component captures
how much of the total inequality is due to disparities between different sec-
tions of the grid, enabling a more granular analysis of equity [6].

Unlike threshold-based metrics, which only ensure a minimum level of
service, or min-max approaches, which may be skewed by outliers, Theil’s
T provides a more comprehensive equity assessment. Its decomposability
allows us to evaluate disparities between different sections, highlighting areas
that experience disproportionately high load shedding and enabling targeted
mitigation strategies. Additionally, Theil’s T is transformable into relative
measures, making it easier to interpret and compare across different grid
conditions. By minimizing Theil’s T, we aim to achieve a more equitable
distribution of load shedding, ensuring that no section of the grid bears a
significantly higher burden than others.

The general formula for the between-zone component is given as:

K _

BZI = yln(“) (1)
k=1

where K is the number of sections (in our case, K = NG, the number of
black-start generator zones), yi is the ratio of the total resource allocated
to zone k relative to the entire system, Z; is the mean amount of resource



allocated to each node in zone, and  is the overall mean amount of resource
allocated per node in the entire system. If the BZI is close to zero, it
indicates near-perfect equality. As BZI increases towards 1, it indicates
growing inequality.

In this problem, the resource under consideration is load shedding. Sup-
pose we have three sections (e.g. 14-bus case study) and let 7, @2, and 23
represent the load shedding in each of these three sections. The total load
shedding in the system is p = @1 + @2 + 3. The mean load shedding per
section in the entire system is = = w = £. The ratio of load shedding
in section k to the total system load shedding is:

Tk Tk
yk—f1+f2+f3—p,kel,2,3 (2)

Substituting these terms into the between-zone equality formula, we have:

2123 P = 3)
_1 P

Thus, if the goal is to minimize the total inequality across all three sections,
the objective function becomes as minimization of equation 3.

Optimizing such a nonlinear formulation directly can be challenging, as
it involves a logarithmic term. To address this, a Taylor series expansion
around a chosen point & can be applied to linearize or approximate the
objective. First, we derive the Taylor’s expansion for one of the sections. we
define z; as Theil’s T index of section 1.

3z
n="In (— !
p p
consider the Taylor expansion around xy = &. After performing the Taylor’s
expansion and collecting terms, we arrive at an approximate form for z;:
2 32
1 3., &(n"<F+1)
21 &~ (1 +2&ln )2 - — L2~ (5)
2pz p 2p
This approximation transforms the problem into a more tractable form. Ap-
plying the same process to zo and z3, the total approximate objective func-
tion becomes:

) (4)

1 3 3
BZI = 2[(x1+xln$)2+(x2+:clnx) +
px p p
34 3#(In? 32 4 1)
(x3+xlnp)}—2£ (6)
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Choosing the right expansion point & is critical for a good approximation.
By taking the derivative of the approximate function with respect to z; (and
similarly for other variables) and setting it to zero, we can find the stationary
point. The dgf I Jeads to the conclusion that & = %(71).

Since the last term and T}i’ in equation (6) are constants, we can omit
them from the objective function. We further approximate BZI by replacing

Z with % in equation (6):

BZI - [< -y

(1= SR o]

3

> (- 2D @

k=1

The above formulations enable the integration of Theil’s T index into
a power grid restoration optimization model by approximating its nonlin-
ear, nonconvex logarithmic terms. This facilitates its use within a bi-level
goal programming framework, offering a practical approach to incorporating
equity considerations into complex infrastructure decision-making.

2.1.2. Equity Gap Index

To address equity in the lower-level optimization problem, we use the
equity gap metric. As mentioned earlier, incorporating the WZI component
of Theil’s T index would introduce nonlinearity and non-convexity, which
pose challenges in solving a bilevel optimization problem. Instead, we adopt
the equity gap approach to maintain convexity while ensuring fairness in
resource allocation within each section.

The equity gap captures the disparity between the entities receiving the
highest and lowest amounts of a resource. To minimize this gap, we introduce
the following objective function:

min fEA = Tmaz — Tmin (8)

where x4, represents the maximum resource allocated to any entity in the
system, and x,,;, represents the minimum allocation. To define these values,
we introduce the following constraints:

Tmag = Ti, Vi <9)

11



Later in our mathematical formulations, we replace x with LS, %4, with
LSiaz, and T, with LS,,;, for both the equity gap and Theil’s T index
formulation. This structured approach ensures equity within each section
while keeping the lower-level problem tractable.

2.2. Equity based GPP Model

This is the first section that we are going to discuss about the basic GPP
model. The GPP at the upper level aims to optimize the restoration process
by minimizing (11) the amount of load shedding, (12) restoration time, (13)
the cost of power generation, and (14) the objective term of the GPP. The
objective term of the GPP aims to minimize the number of tie-lines between
different sections of the grid to facilitate the process of grid segmentation.
The objectives are stated as follows:

m)énfEQ = BZI (11)
m)énfT =wl(ToS) (12)
In)én fr =T pP@ (13)

min f¢7F = 22D Y * Ayl (14)

X Vb

p =s-KD: - (D-LS) (15)
> Sug =1 (16)
g

Z Sbg = Nm (17)

b
> = NB (18)
m
Yy =1- Z Sbg * Sp' g (19)
g

T =M-s—(1-s)-T
nm—1 = Zb’ FLyy — Zb’ FLy,, Ybed
1 = Zb’ FLyy — Zb’ FLyy, Vb ¢ G
where X is a set of decision variables including binary sectionalization vari-
ables s, binary line availability variables y, power generation variables p,

restoration time T, and load shedding variables LS. In equation (14),
apy is the elements of matrix A = [abb/]| NB|x|NB| Which equals to one

12



if buses b and b’ are connected and zero otherwise. p = | pgth NG|x|NT]|
and py; represents the power generated by BS unit g at time t. Equation
(15) is the load balance equation to ensure that the amount of power pro-
duced equals the total demand minus load shedding for each section. Matrix
KD = [KDyq]inB|x|np] i to indicate if demand node d is located on net-
work bus b € B, where d is a subset of B. For example, K D3; = 1 means
that demand node 1 is connected to bus 3. Matrix D = [Dg]|np|x|nT)|
shows the amount of demand d at time t. Equation (16) makes sure that
each bus belongs to one and only one subsection. Equation (17) specifies
the number of buses in each cluster and equation (18) ensures that the sum-
mation of different cluster’s nodes do not exceed the total number of buses.
Equation (19) is for the tie line configuration. If two buses are in the same
subsection, then yuy equals 0; otherwise, it equals 1. Equation 21 captures
the restoration time, T. The parameter T = [T bg INBxNG is a matrix rep-
resenting the total energizing delay by bus b and generator g. The amount
of energizing delays are calculated for each bus by finding the shortest path
between bus b and generator g using Digkstra’s algorithm [53] based on the
electrical parameter of transmission lines, such as the series impedance of
each transmission line [16]. The equations (22) and (23) ensure that each
generator in each subsection provides a flow equal to the number of demand
nodes in that subsection and each demand node receives a flow equal to one
[54].

Note that constraint (19) is a quadratic equation, which can add a com-
putational burden in solving the model. To overcome this issue, we linearize
the constraint [55]:

—Yob' — Smb T Sy < 0 (24)
—Ybty + Smb — Smp/ <0 (25)

The objective functions at the lower-level model are formulated like to
the upper-level model excluding the GPP objective with the line power flow
constraints as follows.

13



IH)%H fEQ :LSma:p - Lszn (26)
min fr =wT(ToS) (27)
m)én fr = p¢ (28)
P =s- KD - (D-LS) (29)
pmin Sp < pmaz (30)
[PLy| <SPL™ (1= ypy) (31)
PLy — O = O <M .ypy (32)
xy
PLy — @ 2(=1).M.ypy (33)
l
Oref,t =0 (34)
LSz >LSyg Vd,t (35)
LSin <LSg Vd,t (36)

Constraint (31) is to prevent overloading on each line. Constraints (32) to
(34) are for transmission lines power flow.

Furthermore, a new constraint is added to re-evaluate the restoration
time:

Ty < M- LSq + CT, (37)

Equation (37) captures the exact moment of when having zero load shedding
at each demand node. Instead of f7, a weighted value of T is maximized
by the lower-level objective function. Hence, the restoration time objective
term can be stated as

fT=—wl'.T (38)

where, w = [wq]|np is the cost of each hourly delay in the restoration of
demand d. With this additional set of constraints (31)-(37), the optimal dis-
patched power flow is determined to give the final amount of unmet demand,
LS, and the restoration time, T.

2.8. Equity based RCP Model

The restoration plan by the GPP model has a connectivity matrix of the
power grid as an input parameter. The connectivity matrix A = [apy |[NBxNB

14



shows the connection status between each pair of buses via a binary parame-
ter apy. The diagonal elements ay, are always zero because it is assumed that
a bus is not connected to itself. Although the line status can be observed via
available sensors or phasor measurement units [56], some damaged lines may
not be observable; hence, it is difficult to assess the status due to limited ac-
cessibility immediately after a disaster. Therefore, we consider the aftermath
connectivity status of a power grid as an uncertain parameter and propose a
RO method to develop a restoration plan accordingly. Wind intensity affects
the line damage, which can be described through several factors such as the
wind speed [30], the rainfall amount, the surge height, and the length of the
forced outage [57]. A fragility curve (see Figure 2) is used to estimate the
probability of the line failure for a given wind speed [58]. Because it is a

Figure 2: Fragility curve of high voltage transmission lines [30]

non-linear function, it is often approximated by a linear function associated
with a high-voltage transmission line [48|. In this paper, the line status for
a given simulated scenario of a wind speed is determined by the following
rule:

{ Qpp = 1 P(wl) > i, [~ (b, b/), Vi (39)

apy =0 P(wl) < gy L~ (b, b,), Vi

where, for line [, P(w;) is the probability of line failure for wind speed w; and
wy is a tolerance threshold against the wind intensity. The set of wind speed
scenarios are generated by a Monte Carlo simulation [59|, where a Weibull
distribution is used for the wind speed based on the goodness-of-fit test. The
resulting line availability scenarios are tabulated as A® = [aw® |[NBxNB-
The goal of the RO model is to find an optimal solution to minimize
the worst possible scenario that could happen in reality. Since the uncertain

15



parameter appears in the objective function of the upper-level model only,
the objective function of the GPP is revised as
fere — m)én max fEEP (40)
S
For simplicity in the implementation of the optimization model, we reformu-

late this objective function by introducing a new variable z, an upper bound
of max, fSG PP and add the following constraint to the model:

z > Z Az * Yoi!, V'S (41)
(b,b')~

Since parameter aj;, is binary, we can represent the worst-case by replacing
ay,, with Ilgag,, as:

2= ) (Wagy).ymw (42)

(b, )~

This reformulation works because if a particular line between buses b and v’
becomes unavailable even for one scenario 4, aéb, becomes zero; consequently,
Isag, = 0. We can use this idea to capture the worst-case scenario simply
by multiplying all aj,,, i.e., Ilsap,.

The resulting model is a linear robust counterpart (RCP) problem with
four objectives.

min fEs (43)
min fT (44)
mzn fr (45)
m)én z (46)
s.t. Constraints (15) — (18),(20) — (21) (47)

Like the GPP model, the RCP is a bi-level model that can be solved
through an iterative optimization process. At each iteration, upper- and
lower-level models are solved using the preemptive goal programming method
considering the different unit scales and priority among the objective terms

13].
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2.4. Accounting for Planner’s Risk Tolerance via Degree of Conservativeness

A drawback of solving the power restoration problem using the worst-
case RCP model is that the obtained solution can be too conservative with
respect to the actual realization of a disaster (i.e., hurricane). This can
become particularly problematic if the generated scenarios exhibit a wide
range of variability having only a few data points far away from the rest of
the data. As the RCP is designed to find a solution satisfying all scenarios,
the resulting solution may be unnecessarily conservative because those less
common scenarios do not likely occur in reality. To address this issue and
provide the decision maker (DM) with the flexibility in obtaining a solution
considering the DM’s risk tolerance, we propose a concept "degree of con-
servativeness" () of a solution in a RCP model. Without using ¢, a RCP
model will assume a line is failed unless all scenarios (100%) of an uncertain
parameter show the line is working. Therefore, J is a control parameter for a
DM to use so that a line will be considered failed in the optimization model if
less than ¢ x 100 percent of the generated scenarios show the line is operable.
For example, suppose the DM sets d to 0.9. This means a particular line
will be assumed working in the optimization model only if more than 90%
of the generated scenarios show the line being operable. This parameter is
important because it allows the model to be customizable depending on the
DM’s risk preference. If the DM does not want to take any risk with respect
to the realization of the line failure (i.e., risk averse), the ¢ value should
be 1 (or 100%), i.e., the worst-case RO. However, plans associated with the
worst-case scenario may result in inefficient use of resources because such
extreme cases may be less likely realized in a real situation. Hence, the DM
may want to choose a value less than 100% so that the resulting plan should
work according to the selected level of 6.

As we explained how to pre-calculate Ilsaj;, in the previous section, a
similar implementation can be used to calculate the line connectivity matrix
(d‘gb,) according to the degree of conservativeness. For a specific line between
buses b and V', if less than § percent of all generated scenarios show that line
is available, &gb, would be equal to zero; otherwise, it would be equal to one
(i.e., 100%). Hence, z (42) can be redefined as

2= ) apyyw (48)

(b,d")~l

Then, the RCP model in Section 2.3 with this revised z is solved to
optimize a plan considering the degree of conservativeness.
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Figure 3: The projected IEEE 39-bus test case on the wind speed zones

3. Results and Discussions

Two case studies are prepared based on the IEEE 14-bus, and 39-bus
test systems considering an appropriate number of BS generators [13|. The
National Institute of Standards and Technology (NIST) provides 999 scenar-
ios of a simulated hurricane at the coastline of the Gulf of Mexico [59, 60].
Therefore, we use the data to generate hurricane wind speed scenarios for
this study. The wind speed is provided for 10 meters above the ground level
at every 50 miles. The location of each transmission line among the zones is
determined by the zone which covers most of the line’s length, as illustrated
in Figure 3.

In this section, we analyze the results from different aspects, including
load shedding amount, load shedding percentage, load shedding standard
deviation across scenarios, equity index, and degree of conservativeness. The
results are examined under four different setups: the GPP model without
equity consideration, the EA-GPP model with equity consideration, the RCP
model without equity consideration, and the EA-RCP model with equity
consideration.

Black start generators are used for rapid power restoration, but their ca-
pacity may not be sufficient enough to meet all demand, leading to inevitable
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(a) The IEEE 14-bus test case abstracted as a (b) The partitioned IEEE 14-bus test
graph case

Figure 4: Graph shape of the 14-bus power network

load shedding, particularly during peak demand hours. The restoration pro-
cess is modeled over a time horizon of 24 hours, with decisions made at
1-hour intervals.

Tables 1 and 2 summarize the overall load-shedding outcomes across dif-
ferent models. One key observation is that the total load shedding amount
remains the same in the GPP and RCP models compared to the EA-GPP and
EA-RCP models. This happens because the system fully utilizes the avail-
able generation capacity to meet demand, ensuring that all possible power
generation is used. However, in other scenarios where excess generation is
available, the load shedding amount may vary between models.

While the absolute load shedding amount remains unchanged, the per-
centage of load shedding differs between the equity-aware and non-equity
models. The equity-aware models, EA-GPP and EA-RCP, result in a lower
average load-shedding percentage compared to their non-equity counterparts.
This occurs because the equity-aware objectives aim to minimize dispari-
ties in power restoration across different demand buses, leading to a more
balanced distribution of available power. The reduction in load-shedding
percentage indicates that these models prioritize fairness, even if the total
amount of load shedding remains the same.

Another key result is the impact of robustness on load shedding vari-
ability. In the GPP-based models, the standard deviation of load shedding
amount is nonzero across different scenarios. This is due to the fact that
these models do not account for the stochasticity of transmission line avail-
ability, meaning that restoration outcomes vary across different failure sce-
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Table 1: RCP and GPP models comparison

Opt. Test Non-Equity Models
Models Case LS LS LS LS Perc-
Amount S.D. | Percentage entage S.D.
GPP 14-bus 5.41 2.80 28% 10%
39-bus 43.15 9.04 18% 1%
14-bus 4.74 0 15% 0%
RCP 39-bus 13.97 0 11% 0%

Table 2: EA-GPP and EA-RCP models comparison

Opt. Test Equity Models
Models Case LS LS LS LS Perc-
Amount S.D. | Percentage entage S.D.
GPP 14-bus 4.74 2.80 25% 11%
39-bus 43.15 9.04 17% 2%
14-bus 4.74 0 5% 0%
RCP 39-bus 13.97 0 10% 0%

narios. In contrast, the RCP-based models show a standard deviation of
zero in load shedding. This indicates that the robust counterpart model suc-
cessfully accounts for uncertainties in transmission line failures, leading to a
consistent restoration strategy across all scenarios. The robustness ensures
that, regardless of specific failure scenarios, the system adapts to worst-case
disruptions and maintains stability in power restoration.

Tables 1 and 2 highlights these results in detail, showing how equity-
aware and robust models influence load shedding patterns across different
test cases. The results demonstrate that robust optimization stabilizes out-
comes across different failure scenarios, while equity-aware objectives reduce
disparities in power distribution, leading to a more socially fair restoration
process.

Table 3 summarizes the equity performance of the models. The equity
objective in the upper-level mathematical model was to minimize Theil’s T
index, while the lower-level objective was to minimize the equity gap. The
table presents these metrics for different model configurations. Although
comparing equity metrics between the GPP and RCP models is not mean-
ingful due to their structural differences, the comparison between non-equity
and equity-aware models reveals significant improvements in both metrics.

Theil’s T index ranges from 0 to co, where values closer to 0 indicate
better equity. In both the GPP and RCP models, the equity-aware ver-
sions achieve a lower Theil’s T index, indicating improved fairness in power
distribution. Similarly, the average equity gap, defined as the average load-
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Table 3: Comparison of Theil’s T Index and Equity Gap for Non-Equity and Equity
Models

Equity Consideration
Equity Non-Equity
GPP | 0.5242 1.4087
RCP | 1.1311 1.9993
GPP 42% 67%
RCP 56% 66%

Metric Model

Average Theil’s T Index

Average Equity Gap

shedding percentage gap within sections across different scenarios, is lower in
the equity-aware models. This reduction highlights the model’s ability to en-
hance social equity in power restoration. However, given the multi-objective
nature of the problem, achieving perfect equity is often not feasible.

3.1. Analysis on the degree of conservativeness

So far, in Tables 1 and 2, we have presented the performance of the GPP
model and the best-performing RCP model. Now, we analyze the average
load-shedding amount and percentage across all degrees of conservatism. The
degree of conservatism, denoted as 9§, is defined as the threshold that deter-
mines whether a transmission line is considered available based on its failure
probability across all scenarios. Specifically, if the proportion of scenarios in
which a transmission line remains operational falls below this threshold, the
line is deemed unavailable in the optimization process.

For extreme values of 8, consider § = 1. This implies that if, out of 999
wind speed scenarios, a specific transmission line is available in 998 scenarios
but fails in just one, the ratio % < 1, meaning that the line is considered
unavailable. Thus, § = 1 represents the worst-case scenario, where even a
single failure scenario results in the exclusion of a transmission line.

Conversely, if § = 0, all lines are considered available because no ra-
tio can be lower than zero, i.e., gogg £ 0 Vn € Z*. This extreme case is
equivalent to the deterministic GPP model, where no transmission line fail-
ures are assumed. The degree of conservatism can take any value between 0
and 1, allowing for a balance between worst-case robustness and optimistic
planning.

When § = 0, the model behaves as a deterministic system, leading to
greater fluctuations in output across different wind speed scenarios. At § = 1,
the model becomes overly conservative, limiting the number of available
transmission lines, even when many are operational in reality. This excessive
conservatism results in suboptimal performance and unnecessary restrictions.
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By gradually increasing §, we reach a sweet spot where fluctuations are
minimized while maintaining strong performance metrics.

Figures 5a and 5b validate this observation. Figure ba illustrates the av-
erage load shedding percentage across 10 degrees of conservatism, increasing
in increments of 0.1, for the 14-bus test case. The optimal range appears
to be between § = 0.7 and § = 0.9, where fluctuations decrease and load-
shedding performance improves. Another key takeaway from this figure is
that the equity-aware model consistently results in a lower load-shedding
percentage compared to the non-equity model across nearly all conservatism
levels, demonstrating the robustness of the equity-aware formulation.

Figure 5b presents the average load shedding amount across different
degrees of conservatism. The trend confirms that the minimum load shedding
occurs between § = 0.7 and § = 0.9, reinforcing the conclusion that this
range provides the most balanced trade-off between conservatism and system
performance. We will discuss about the fluctuations later.

(a) (b)

Figure 5: The effect of changing degree of conservativeness on average load shedding (a)
percentage and (b) amount for 14-bus test case.

(a) (b)

Figure 6: The effect of changing degree of conservativeness on average load shedding (a)
percentage and (b) amount for 39-bus test case.

Figures 6a and 6b present the same analysis for the 39-bus test case, il-
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lustrating the trends in load-shedding percentage and load-shedding amount
across different degrees of conservatism. Similar to the 14-bus case, both
metrics reach their minimum values around ¢ = 0.7, reinforcing the observa-
tion that this range provides the most effective trade-off between robustness
and performance.

To further demonstrate the robustness of our model, we analyze the
standard deviations of load shedding across all scenarios at different degrees
of conservatism. Figures 7a and 7b summarize these results. In Figure 7a, we
observe that for § > 0.7, the standard deviation of load-shedding percentage
across all scenarios converges to approximately zero. This indicates that as
we approach § = 1, the model becomes increasingly robust, with the outputs
becoming less sensitive to variations in wind speed scenarios.

A similar trend is observed in Figure 7b, which depicts the standard
deviation of load-shedding amount across different conservatism levels. The
decreasing variability confirms that the model’s decisions become more stable
and resilient as  increases, ensuring that the restoration strategy is less
affected by individual failure scenarios. These results highlight the model’s
ability to adapt to uncertainty while maintaining consistent performance at
higher levels of conservatism.

(a) (b)

Figure 7: Standard Deviation vs. degree of conservativeness for (a) load shedding per-
centage and (b) load shedding amount.

3.2. Equity Awareness and Degrees of Conservativeness

This section compares the performance of different optimization models
introduced in this paper, including the equity aware robust model (EA-
RCP), non-equity aware robust model (RCP), equity aware deterministic
model (EA-GPP), and non-equity aware deterministic model (GPP). Figure
5 shows comparisons between EA-RCP and RCP for (a) the average load
shedding percentage and (b) the average load shedding amount over different
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degrees of conservativeness. Each data point represents an average value of
twenty different scenarios.

The EA-RCP model’s purpose is to restore power up to a certain level
to ensure all nodes have at least some amount of power. Therefore, the EA-
RCP model may have a higher average load shedding amount to achieve a
lower average load shedding percentage. Two observations can be made from
this experiment.

First, for 6 € [0,0.9], the average load shedding percentage for the EA-
RCP model was lower than the RCP model by average of 5.6 %,as seen
in Figure 5a. This means EA-RCP ensures all nodes have some level of
restored power, while the RCP model just focuses on minimizing the total
load shedding amount. Consequently, the total amount of load shedding
from the RCP may be lower than that of the EA-RCP. This comparison is
shown in Figure 5b for different § values. As expected, the RCP solution
has a slightly lower load shedding amount, but the difference is negligible for
0 € (0.1,0.5).

We further discuss this with an example in Figure 9. This example is
for three load nodes (2, 3, and 4) in the last 6 hours of our restoration time
horizon with § = 0.8. Figure 9a shows the load shedding performance for
the EA-RCP model, and Figure 9b shows it for the RCP model. The total
load shedding amount for both of the models was equal throughout the time
horizon. However, the average load shedding percentage was much lower for
the EA-RCP model. The reason for this is that nodes 3 and 4 have lower
demand than node 2. The RCP model tries to restore the power of nodes that
have a higher load demand so that the total load-shedding amount will be
minimized. Thus we observed that nodes 3 and 4 have 100% load shedding
most of the time. But, the EA-RCP model put all the load shedding on node
2. It is because the priority here was restoring loads to a certain operational
percentage. So, putting all the loads on node 1 would be a better decision
towards equity since nodes 3 and 4 were restored completely, and node 1 has
a certain amount of power to operate.

The second observation is how using the degrees of conservativeness con-
cept affects load shedding among different models. The solution of the robust
model does not always lead to the best results for load shedding since the RO
is very conservative in dealing with an uncertain model parameter. Figures
5 show that choosing a degree of conservativeness between 0.5 to 0.9 leads
to better load shedding performance.

Figure 8a shows two box plots of the average load shedding percentage
over different degrees of conservativeness for the EA-RCP and RCP models.
Note that 6 = 0 is equivalent to the GPP model being the least conservative
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(a) Load shedding percentage box-plot over the  (b) Load shedding amount box-plot over the
different degrees of conservativeness different degrees of conservativeness

Figure 8: The effect of changing degree of conservativeness on the dispersion of load
shedding

regarding the unknown power line availability.

(a) EA-RCP solution: load-shedding (b) RCP solution: load-shedding

Figure 9: An example final load shedding for load nodes 2, 3, and 4 at time horizons 19-24
for (a) EA-RCP and (b) RCP

Two observations can be made from this figure. First, the variation of
the load shedding percentage for EA-RCP is lower than RCP as expected.
Second, as we increase the degree of conservativeness, the variation inside
each model decreases. This means that the model becomes more robust as
the degree of conservativeness is increased. On the other hand, Figure 8b
demonstrates the load shedding amount box plot over the different degrees
of conservativeness between EA-RCP and RCP. The EA model exhibits a
higher variance in the load shedding amount. This is because minimizing
the amount of load shedding does not take high priority in the EA model.

Figure 10 is a radar plot to compare performance of the four different
models. The results for the RCP model are based on § = 0.9. Figure 10b
shows that the EA-RCP model achieved the lowest average load shedding
percentage compared to the other models (EA-GPP, GPP, EA-RCP, and
RCP). In the case of the load shedding amount, figure 10a shows that the
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(a) Load shedding amount (b) Load shedding percentage

Figure 10: Radar diagram for comparison between four different models

RCP models outperform GPP models. Also, the EA-RCP and RCP have
the same amount of load shedding for § = 0.9. Overall, the EA-RCP outper-
formed other models by having the lowest load shedding amount and load
shedding percentage.

4. Conclusion

Fast restoration of power grids is essential to build resilient power systems
for our society as many vital infrastructures depend on reliable electricity
for normal operations. This paper presented optimization models consider-
ing equity in power restoration dealing with the aftermath of a disaster. We
began with a revised optimization model formulation under no parameter un-
certainty assumption, followed by equity-aware models and the RCP model
formulation. Our revised model addresses the infeasibility problem found in
the existing model in the literature. Then, a worst-case RCP approach was
proposed to address uncertainty on the availability of the transmission lines
caused by an extreme event. The concept of degree of conservativeness also
proposed to take decision makers risk tolerance into account. In theory, a
worst-case RCP generates a solution satisfying various possible realizations
of the event. As a result, the solutions can be unnecessarily conservative
and call for over-commitment of scarce resources during the restoration pro-
cess. Therefore, the concept of degree of conservativeness was introduced
so that the decision makers can participate in the plan generation depend-
ing on their risk-taking preference. In the proposed model, the degree of
conservativeness can be controlled by parameter §. Numerical experiments
are made to test the performance of the GPP, RCP, EA-GPP, and EA-RCP
models using three IEEFE test bus instances: 14, 39, and 118. We made
a few notable observations from the results. First, we started to compare
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GPP model and RCP model regarding their load-shedding and restoration
time performance. Then we did a conservativeness analysis on EA-RCP and
RCP models. the results showed that along different degrees of conserva-
tiveness the load-shedding performances are different. for 14-bus test case
5 €[0.1,0.9] gave us the best performance. We also showed the RCP-based
models converged fast, and its performance was comparable to the GPP
based on the cases used in this study. Furthermore, we considered equity
criteria into account and observed that equity-aware model performs better
considering load-shedding percentage as the performance metric. A numeri-
cal example was proposed to discuss the benefit of using equity-aware model
to restore power to a certain operational level for each node. Regarding the
load-shedding amount, EA-RCP model worked very close to RCP.

This paper assumed known demand and a pre-determined amount of
power to support the network. However, these parameters can be uncertain
in practice. Hence, future work can extend this paper to consider uncertainty
in those input parameters in an RCP model or data-driven optimization
model.
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